On k-simplexes in (2k − 1)-dimensional vector spaces over finite fields
نویسنده
چکیده
We show that if the cardinality of a subset of the (2k− 1)-dimensional vector space over a finite field with q elements is q2k−1− 1 2k , then it contains a positive proportional of all k-simplexes up to congruence. Résumé. Nous montrons que si la cardinalité d’un sous-ensemble de l’espace vectoriel à (2k − 1) dimensions sur un corps fini à q éléments est q2k−1− 1 2k , alors il contient une proportion non-nulle de tous les k-simplexes de congruence.
منابع مشابه
On k - simplexes in ( 2 k − 1 ) - dimensional vector spaces over finite fields
We show that if the cardinality of a subset of the (2k − 1)-dimensional vector space over a finite field with q elements is ≫ q 2k−1− 1 2k , then it contains a positive proportional of all k-simplexes up to congruence.
متن کاملCyclic wavelet systems in prime dimensional linear vector spaces
Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.
متن کاملOrthogonal Systems in Vector Spaces over Finite Fields
We prove that if a subset of the d-dimensional vector space over a finite field is large enough, then it contains many k-tuples of mutually orthogonal vectors.
متن کاملUbiquity of simplices in subsets of vector spaces over finite fields
We prove that a sufficiently large subset of the d-dimensional vector space over a finite field with q elements, Fq , contains a copy of every k-simplex. Fourier analytic methods, Kloosterman sums, and bootstrapping play an important role.
متن کامل2 00 7 Harmonic analysis on local fields and adelic spaces I
We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009