On k-simplexes in (2k − 1)-dimensional vector spaces over finite fields

نویسنده

  • Le Anh Vinh
چکیده

We show that if the cardinality of a subset of the (2k− 1)-dimensional vector space over a finite field with q elements is q2k−1− 1 2k , then it contains a positive proportional of all k-simplexes up to congruence. Résumé. Nous montrons que si la cardinalité d’un sous-ensemble de l’espace vectoriel à (2k − 1) dimensions sur un corps fini à q éléments est q2k−1− 1 2k , alors il contient une proportion non-nulle de tous les k-simplexes de congruence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On k - simplexes in ( 2 k − 1 ) - dimensional vector spaces over finite fields

We show that if the cardinality of a subset of the (2k − 1)-dimensional vector space over a finite field with q elements is ≫ q 2k−1− 1 2k , then it contains a positive proportional of all k-simplexes up to congruence.

متن کامل

Cyclic wavelet systems in prime dimensional linear vector spaces

Finite affine groups are given by groups of translations and di- lations on finite cyclic groups. For cyclic groups of prime order we develop a time-scale (wavelet) analysis and show that for a large class of non-zero window signals/vectors, the generated full cyclic wavelet system constitutes a frame whose canonical dual is a cyclic wavelet frame.

متن کامل

Orthogonal Systems in Vector Spaces over Finite Fields

We prove that if a subset of the d-dimensional vector space over a finite field is large enough, then it contains many k-tuples of mutually orthogonal vectors.

متن کامل

Ubiquity of simplices in subsets of vector spaces over finite fields

We prove that a sufficiently large subset of the d-dimensional vector space over a finite field with q elements, Fq , contains a copy of every k-simplex. Fourier analytic methods, Kloosterman sums, and bootstrapping play an important role.

متن کامل

2 00 7 Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009